منابع مشابه
The Non-Crossing Graph
Two sets are non-crossing if they are disjoint or one contains the other. The noncrossing graph NCn is the graph whose vertex set is the set of nonempty subsets of [n] = {1, . . . , n} with an edge between any two non-crossing sets. Various facts, some new and some already known, concerning the chromatic number, fractional chromatic number, independence number, clique number and clique cover nu...
متن کاملCrossing Minimization within Graph Embeddings Crossing Minimization within Graph Embeddings
We propose a novel optimization-based approach to embedding heterogeneous high-dimensional data characterized by a graph. The goal is to create a two-dimensional visualization of the graph structure such that edge-crossings are minimized while preserving proximity relations between nodes. This paper provides a fundamentally new approach for addressing the crossing minimization criteria that exp...
متن کاملThe Sum Graph of Non-essential Submodules
Throughout this paper, R will denote a commutative ring with identity and M is a unitary R- module and Z will denote the ring of integers. We introduce the graph Ω(M) of module M with the set of vertices contain all nontrivial non-essential submodules of M. We investigate the interplay between graph-theoretic properties of Ω(M) and algebraic properties of M. Also, we assign the values of natura...
متن کاملNon-Crossing Frameworks with Non-Crossing Reciprocals
We study non-crossing frameworks in the plane for which the classical reciprocal on the dual graph is also non-crossing. We give a complete description of the self-stresses on non-crossing frameworks G whose reciprocals are non-crossing, in terms of: the types of faces (only pseudo-triangles and pseudo-quadrangles are allowed); the sign patterns in the stress on G; and a geometric condition on ...
متن کاملvertex centered crossing number for maximal planar graph
the crossing number of a graph is the minimum number of edge crossings over all possible drawings of in a plane. the crossing number is an important measure of the non-planarity of a graph, with applications in discrete and computational geometry and vlsi circuit design. in this paper we introduce vertex centered crossing number and study the same for maximal planar graph.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2006
ISSN: 1077-8926
DOI: 10.37236/1140